Sie haben keine Artikel im Warenkorb.

Approaches to Enhance Industrial Production of Fungal Cellulases (eBook)

CHF 118.00
ISBN: 978-3-030-14726-6
GTIN: 9783030147266
Einband: PDF
Verfügbarkeit: Download, sofort verfügbar (Link per E-Mail)
+ -
Cellulase is a key enzyme of industrial interest and plays a crucial role in the hydrolysis of cellulose, a prime component of plant cell walls. Cellulase covers a broad area in the global market of industrially important enzymes and it is considered as the third largest industrial enzyme globally. Additionally, cellulase contributes about 20% of the total enzyme market globally because of its massive demand in various industries such as in biofuel production, pulp, paper, textile, food, and beverages, as well as in detergent industries. Among these, the demand of cellulase may become frequently selected in the commercial production of biofuels in the future and thus will further increase demand of cellulase in the biofuel industry. Because biofuel production is still not realized in a cost-effective, practical implementation due to its high cost (the higher cost of biofuels is due to higher production costs of enzymes), there is a need to introduce these types of approaches, which will help to lower the cost of enzyme production for developing overall economic biofuel production.
*
*
*
*
Cellulase is a key enzyme of industrial interest and plays a crucial role in the hydrolysis of cellulose, a prime component of plant cell walls. Cellulase covers a broad area in the global market of industrially important enzymes and it is considered as the third largest industrial enzyme globally. Additionally, cellulase contributes about 20% of the total enzyme market globally because of its massive demand in various industries such as in biofuel production, pulp, paper, textile, food, and beverages, as well as in detergent industries. Among these, the demand of cellulase may become frequently selected in the commercial production of biofuels in the future and thus will further increase demand of cellulase in the biofuel industry. Because biofuel production is still not realized in a cost-effective, practical implementation due to its high cost (the higher cost of biofuels is due to higher production costs of enzymes), there is a need to introduce these types of approaches, which will help to lower the cost of enzyme production for developing overall economic biofuel production.
Autor Srivastava, Manish (Hrsg.) / Srivastava, Neha (Hrsg.) / Ramteke, Pramod W. (Hrsg.) / Mishra, Pradeep Kumar (Hrsg.)
Verlag Springer International Publishing
Einband PDF
Erscheinungsjahr 2019
Seitenangabe 209 S.
Ausgabekennzeichen Englisch
Abbildungen XV, 209 p. 30 illus., 23 illus. in color.
Auflage 1st ed. 2019
Plattform PDF
Reihe Fungal Biology

Über den Autor Manish (Hrsg.) Srivastava

Dr. Manish Srivastava is currently working as Chief Technical Officer in the area of sustainable nanotechnology and bioprocessing stream in LCB Fertilizers Pvt Ltd. He worked as SERB-Research Scientist in the Department of Chemical Engineering and Technology IIT (BHU), Varanasi, India. He has worked as DST INSPIRE faculty in the Department of Physics and Astrophysics, University of Delhi, India during June 2014 to June 2019. He has published 79 research articles in peer-reviewed journals, edited 17 books for publishers of international renown, authored several book chapters, and filed one patent. He worked as a post doctorate fellow in the Department of BIN Fusion Technology, Chonbuk National University, South Korea from August 2012 to August 2013. He was an assistant professor in the Department of Physics, DIT School of Engineering, Greater Noida, from July 2011 to July 2012. He received his PhD in Physics from the Motilal Nehru National Institute ofTechnology, Allahabad, India, in 2011. Presently, he is working on the synthesis of graphene-based metal oxide hybrids and their applications as catalysts. His areas of interest are synthesis of nanostructured materials and their applications as catalyst for the development of electrode materials in energy storage, biosensors, and biofuels production. Dr. Ashutosh Kumar Rai has been working as an Assistant Professor of Biochemistry at the College of Medicine, Imam Abdulrahman Bin Faisal University, Saudi Arabia since 2017. Dr. Rai completed his Ph.D. (2012) in Applied Biochemistry from the School of Biotechnology, Banaras Hindu University, India in the area of microbial biotechnology and molecular biology. Dr. Rai has 17 years of teaching and research experience with more than 50 SCI publications. 

Weitere Titel von Manish (Hrsg.) Srivastava