Sie haben keine Artikel im Warenkorb.

Birkhäuser Boston

Filter

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models. . . . . . . . . . . . . . . . . . . . 326 q>/ quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents. . . . 341 Remark on the existence of q>. ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex functions in quantum field models . . . . . 372 Three-particle structure of q>4 interactions and the scaling limit . . . . . . . . . 397 Two and three body equations in quantum field models . . . . . . . . . . . . . . . 409 Particles and scaling for lattice fields and Ising models. . . . . . . . . . . . . . . . 437 The resummation of one particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a q>4 field theory. . . . . . .. . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortices and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII Reflection Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Inimite Reoormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Part I. The cp~ Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Qspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 39 Removing the space cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Lorentz covariance and the Haag-Kastler axioms. . . . . . . . . . . . . . . . . . . . . . 61 Part II. The Yukawa Model 71 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 First and

CHF 178.60

. . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortiees and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Removing the space cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Lorentz covariance and the Haag-Kastler axioms. . . . .


CHF 178.60

This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ­ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max­ well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer­ mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields.

CHF 65.55

CHF 224.20

A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.


CHF 127.30

CHF 178.60

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models. . . . . . . . . . . . . . . . . . . . 326 q>,' quantum field model in the single-phase regions: Differentiability of the mass and bounds on critical exponents. . . . 341 Remark on the existence of q>:. . . ¿ . . . . ¿ . . . . ¿ . . . . . . . . ¿ . ¿ . . . . . . . . . . ¿ . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary particles. . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex functions in quantum field models. . . . . 372 Three-particle structure of q>4 interactions and the scaling limit . . . . . . . . . 397 Two and three body equations in quantum field models. . . . . . . . . . . . . . . 409 Particles and scaling for lattice fields and Ising models. . . . . . . . . . . . . . . . 437 The resummation of one particle lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings. . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a q>4 field theory. . .. . . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortices and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 ix VIII Reflection Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 x Introduction This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ­ ity. They have survived ever since.

CHF 127.30

Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi­ neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati­ cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high­ quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil­ ity is then a key issue; the software must provide an efficient environment for incorporation of new methods and models that will be required in fu­ ture problem scenarios. The development of such kind of flexible software is a challenging and expensive task. One way to achieve these goals is to in­ vest much work in the design and implementation of generic software tools which can be used in a wide range of application fields. In order to provide a forum where researchers could present and discuss their contributions to the described development, an International Work­ shop on Modern Software Tools for Scientific Computing was arranged in Oslo, Norway, September 16-18, 1996. This workshop, informally referred to as Sci Tools '96, was a collaboration between SINTEF Applied Mathe­ matics and the Departments of Informatics and Mathematics at the Uni­ versity of Oslo.


CHF 127.30

For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A  tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks.

This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. It begins with four chapters developing the most significant formal-theoretical issues of network modeling, but the majority of the book is devoted to combining theoretical results with an empirical analysis of real networks. Specific topics include:

  • chemical graph theory
  • ecosystem interaction dynamics
  • social ontologies
  • language networks
  • software systems

This work marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines. As such, it can serve as a valuable resource for a diverse audience of advanced students and professional scientists. It is primarily intended as a reference for research, but could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others.


CHF 107.20

This book developed from a series of lectures I gave at the Symposium on Nonlinear Microlocal Analysis held at Nanjing University in October. 1988. Its purpose is to give an overview of the use of microlocal analysis and commutators in the study of solutions to nonlinear wave equations. The weak singularities in the solutions to such equations behave up to a certain extent like those present in the linear case: they propagate along the null bicharacteristics of the operator. On the other hand. examples exhibiting singularities not present in the linear case can also be constructed. I have tried to present a crossection of both the regularity results and the singular examples. for problems on the interior of a domain and on domains with boundary. The main emphasis is on the case of more than one space dimen­ sion. since that case is treated in great detail in the paper of Rauch-Reed 159]. The results presented here have for the most part appeared elsewhere. and are the work of many authors. but a few new examples and proofs are given. I have attempted to indicate the essential ideas behind the arguments. so that only some of the results are proved in full detail. It is hoped that the central notions of the more technical proofs appearing in research papers will be illuminated by these simpler cases.

CHF 65.55

na broad sense Design Science is the grammar of a language of images Irather than of words. Modern communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multi­ dimensional. Architectural renderings commonly show projections onto three mutual­ ly perpendicular planes, or consist of cross sections at different altitudes capa­ ble of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings comprising ramps and other features which disguise the separation between floors, and consequently limit the cre­ ative process of the architect. Analogously, we tend to analyze natural struc­ tures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. Perception is a complex process. Our senses record; they are analogous to audio or video devices. We cannot, however, claim that such devices perceive.


CHF 127.30
This research monograph is a systematic exposition of the background, methods, and recent results in the theory of cycle spaces of ?ag domains. Some of the methods are now standard, but many are new. The exposition is carried out from the viewpoint of complex algebraic and differential geometry. Except for certain foundational material,whichisreadilyavailablefromstandardtexts,itisessentiallyself-contained; at points where this is not the case we give extensive references. After developing the background material on complex ?ag manifolds and rep- sentationtheory, wegiveanexposition(withanumberofnewresults)ofthecomplex geometric methods that lead to our characterizations of (group theoretically de?ned) cyclespacesandtoanumberofconsequences. Thenwegiveabriefindicationofjust how those results are related to the representation theory of semisimple Lie groups through, for example, the theory of double ?bration transforms, and we indicate the connection to the variation of Hodge structure. Finally, we work out detailed local descriptions of the relevant full Barlet cycle spaces. Cycle space theory is a basic chapter in complex analysis. Since the 1960s its importance has been underlined by its role in the geometry of ?ag domains, and by applications in the representation theory of semisimple Lie groups. This developed veryslowlyuntilafewofyearsagowhenmethodsofcomplexgeometry,inparticular those involving Schubert slices, Schubert domains, Iwasawa domains and suppo- ing hypersurfaces, were introduced. In the late 1990s, and continuing through early 2002, we developed those methods and used them to give a precise description of cycle spaces for ?ag domains. This effectively enabled the use of double ?bration transforms in all ?ag domain situations.

From the reviews:

"Cycle spaces can be a useful tool in the study of real semisimple Lie groups, and the research monograph which is reviewed here is devoted to describing their features. The exposition ? is in principle self-contained for a good graduate reader, who will also find a wealth of concrete examples. ? the approach used by the authors throughout this monograph is based on a combination of group-theoretical methods ? the result is an intriguing melting pot, opening interesting perspectives of interaction among different research branches." (Corrado Marastoni, Mathematical Reviews, Issue 2006 h)

"A systematic exposition of the background, methods, and recent results in the theory of cycle spaces of flag domains. ? The value of this progress in mathematics volume to a wide group of researchers ? is indisputable. They all will admire the volume for the many new results presented for the first time. Your reviewer would strongly recommend that you spend a few hours with this volume long enough to familiarize yourself with its contents. You'll be back for the details when you need them." (Current Engineering Practice, Vol. 48, 2005-2006)


CHF 134.40

In a broad sense Design Science is the grammar of a language of images rather than of words. Modern communication techniques enable us to transmit and reconstitute images without the need of knowing a specific verbal sequential language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multidimensional. Architectural renderings commonly show projections onto three mutually perpendicular planes, or consist of cross sections at differ­ ent altitudes representing a stack of floor plans. Such renderings make it difficult to imagine buildings containing ramps and other features which disguise the separation between floors; consequently, they limit the creativity of the architect. Analogously, we tend to analyze natural structures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures.


CHF 109.25

In a broad sense design science is the grammar of a language of images rather than of words. Modem communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. Inter­ national traffic signs use international image symbols which are not An image language differs specific to any particular verbal language. from a verbal one in that the latter uses a linear string of symbols, whereas the former is multidimensional. Architectural renderings commonly show projections onto three mutually perpendicular planes, or consist of cross sections at different altitudes capable of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings compris­ ing ramps and other features which disguise the separation between and consequently limit the creative process of the architect. floors, Analogously, we tend to analyze natural structures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures.

CHF 127.30

In a broad sense design science is the grammar of a language of images rather than of words. Modem communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. Inter­ national traffic signs use international image symbols which are not An image language differs specific to any particular verbal language. from a verbal one in that the latter uses a linear string of symbols, whereas the former is multidimensional. Architectural renderings commonly show projections onto three mutually perpendicular planes, or consist of cross sections at different altitudes capable of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings compris­ ing ramps and other features which disguise the separation between and consequently limit the creative process of the architect. floors, Analogously, we tend to analyze natural structures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures.

CHF 127.30

A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

CHF 204.25

Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge­ bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan­ dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.

"Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case."

-MATHEMATICAL REVIEWS

"A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. "

-ZENTRALBLATT MATH


CHF 149.15

na broad sense Design Science is the grammar of a language of images Irather than of words. Modern communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multi­ dimensional. Architectural renderings commonly show projections onto three mutual­ ly perpendicular planes, or consist of cross sections at different altitudes capa­ ble of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings comprising ramps and other features which disguise the separation between floors, and consequently limit the cre­ ative process of the architect. Analogously, we tend to analyze natural struc­ tures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. Perception is a complex process. Our senses record; they are analogous to audio or video devices. We cannot, however, claim that such devices perceive.


CHF 127.30

CHF 65.55

This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.


CHF 138.70

This book contains both a synthesis and mathematical analysis of a wide set of algorithms and theories whose aim is the automatic segmen­ tation of digital images as well as the understanding of visual perception. A common formalism for these theories and algorithms is obtained in a variational form. Thank to this formalization, mathematical questions about the soundness of algorithms can be raised and answered. Perception theory has to deal with the complex interaction between regions and "edges" (or boundaries) in an image: in the variational seg­ mentation energies, "edge" terms compete with "region" terms in a way which is supposed to impose regularity on both regions and boundaries. This fact was an experimental guess in perception phenomenology and computer vision until it was proposed as a mathematical conjecture by Mumford and Shah. The third part of the book presents a unified presentation of the evi­ dences in favour of the conjecture. It is proved that the competition of one-dimensional and two-dimensional energy terms in a variational for­ mulation cannot create fractal-like behaviour for the edges. The proof of regularity for the edges of a segmentation constantly involves con­ cepts from geometric measure theory, which proves to be central in im­ age processing theory. The second part of the book provides a fast and self-contained presentation of the classical theory of rectifiable sets (the "edges") and unrectifiable sets ("fractals").

CHF 65.55

Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author's lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets.

Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth's or the brain's interior. Specific topics covered include:

* the advantages and disadvantages of Fourier, spline, and wavelet methods

* theory and numerics of orthogonal polynomials on intervals, spheres, and balls

* cubic splines and splines based on reproducing kernels

* multiresolution analysis using wavelets and scaling functions

This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.

From the book reviews:

"This is a constructive approach to approximation by Fourier series (orthogonal polynomials), splines and wavelets. ? The basis functions are illustrated with many color plots and the proofs are fully written out. ? This is a clear introduction to subjects that are not easily found in other textbooks at this level. Obviously it is of interest for geophysical applications." (Adhemar Bultheel, zbMATH, Vol. 1295, 2014)

"The textbook Lectures on constructive approximation teaches the basics and details of Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. ? The style of the book is clearly that of a textbook, since the author makes a great effort to make very complicated concepts comprehensible to the reader. Throughout the book, numerous numerical examples and graphical illustrations support the explanations. This book is appropriate for applied mathematicians and numerical analysts as well as for geoscientists and engineers." (Willi Freeden, Mathematical Reviews, August, 2013)
CHF 87.20

as anywhere today, it is becoming more d- ficult to tell the truth. To be sure, our store of accurate facts is more plentiful now than it has ever been, and the minutest details of history are being thoroughly recorded. Scientists, - men and scholars vie with each other in publishing excruciatingly definitive accounts of all that happens on the natural, political and historical scenes. Unfortunately, telling the truth is not quite the same thing as reciting a rosary of facts. Jos6 Ortega y Gasset, in an adm- able lesson summarized by Antonio Machado's three-line poem, prophetically warned us that the reason people so often lie is that they lack imagination: they don't realize that the truth, too, is a matter of invention. Sometime, in a future that is knocking at our door, we shall have to retrain ourselves or our children to properly tell the truth. The exercise will be particularly painful in mathematics. The enrapturing discoveries of our field systematically conceal, like footprints erased in the sand, the analogical train of thought that is the authentic life of mathematics. Shocking as it may be to a conservative logician, the day will come when currently MATHEMATICS, IN vague concepts such as motivation and purpose will be made formal and accepted as constituents of a revamped logic, where they will at last be allotted the equal status they deserve, si- by-side with axioms and theorems.

CHF 116.85